Improved Water Use of the Maize Soil–Root–Shoot System under the Integrated Effects of Organic Manure and Plant Density

Author:

Wei Li-Chao1ORCID,Zhang Hua-Ping1,Wang Xiao-Lin1ORCID,Zhang Sui-Qi2

Affiliation:

1. College of Life Sciences, Yulin University, Yulin 719000, China

2. State Key Laboratory of Soil Erosion and Dry Land Farming on the Loess Plateau, Northwest Agriculture and Forestry University, Xianyang 712100, China

Abstract

On the Loess Plateau of China, water shortage and serious soil erosion are the key factors that restrict local agricultural development, especially in terms of crop yield. In order to expound the effect of treatment with organic manure in root growth, water transpiration and evaporation, biomass allocation and grain yield and WUE (water use efficiency), we took maize (Zheng Dan 958) sown for four years with three replicates at three densities. The results show that the highest rate of maize grain yield increase with organic manure is about 9.99% for a density of 90,000 plants/ha; at the same time, ET (evapotranspiration) and WUE also achieved marked increments, which the highest values of 415.47 mm with a density of 75,000 plants/ha and 7.92% with a density of 90,000 plants/ha, respectively. The results also demonstrate the obvious effect of organic manure in enhancing root growth and in the maximization of water transpiration and evaporation, and water use plays a vital and valuable role in biomass allocation. The results also serve as orientation for methods to increase maize yield and a reference for other crops in the relation of water and manure to their growth.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

National Science and Technology Program

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3