QTL Mapping and Candidate Gene Mining for Stem Diameter Using Genetic Basis of Cultivated Soybean and Wild Soybean

Author:

Chen Lin1,Li Fuxin1,Li Lanxin1,Ma Shengnan2,Yu Lin2,Tang Chunshuang2,Zhao Kuangyu3,Song Zhen1,Liu Chunyan1,Chen Qingshan1,Wang Jinhui1ORCID

Affiliation:

1. National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China

2. Crop Development Research Institute, Heilongjiang Academy of Land Reclamation Sciences, Harbin 150038, China

3. Fangzheng Comprehensive Product Quality Inspection and Testing Center, Harbin 150899, China

Abstract

Soybean (Glycine max) is a vital food crop, serving as a major source of high-quality protein for human and animal consumption. Stem diameter is one of the primary determinants of the stem lodging resistance of a given plant, but there has been relatively little research to date focused on genes associated with this trait. To address this gap in the literature, 207 chromosome segment substitution lines (CSSLs) were generated in the present study through the crossing and backcrossing of the improved Suinong14 and the wild ZYD00006 soybean varieties. These CSSLs were then used for the mapping of quantitative trait loci (QTLs) associated with stem diameter in two-year field planting materials, leading to the identification of nine QTLs. Whole genome resequencing, RNA-seq, and qPCR were then used to evaluate candidate genes associated with stem diameter within these QTL intervals, ultimately leading to the selection of Glyma.04G004100 as a stem diameter-related gene. Subsequent qPCR analyses revealed that Glyma.04g004100 was upregulated in soybean plants with larger stem diameters, and haplotype analyses yielded results consistent with these stem diameter data in the population used to conduct this study. In summary, a series of QTLs associated with stem diameter were identified in the present study, resulting in the establishment of Glyma.04g004100 as a stem diameter-related gene. Together, these results offer a theoretical foundation for the future molecular-assisted breeding of lodging-resistant soybean varieties, and future functional research focused on Glyma.04g004100 may elucidate the molecular mechanisms and key signaling networks involved in soybean stem development.

Funder

National Natural Science Foundation of China

Inner Mongolia Autonomous Region science and technology project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3