Machine Learning Methods for Evaluation of Technical Factors of Spraying in Permanent Plantations

Author:

Tadić Vjekoslav1ORCID,Radočaj Dorijan1ORCID,Jurišić Mladen1ORCID

Affiliation:

1. Faculty of Agrobiotechnical Sciences Osijek, University of Josip Juraj Strossmayer in Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia

Abstract

Considering the demand for the optimization of the technical factors of spraying for a greater area coverage and minimal drift, field tests were carried out to determine the interaction between the area coverage, number of droplets per cm2, droplet diameter, and drift. The studies were conducted with two different types of sprayers (axial and radial fan) in an apple orchard and a vineyard. The technical factors of the spraying interactions were nozzle type (ISO code 015, code 02, and code 03), working speed (6 and 8 km h−1), and spraying norm (250–400 L h−1). The airflow of both sprayers was adjusted to the plantation leaf mass and the working pressure was set for each repetition separately. A method using water-sensitive paper and a digital image analysis was used to collect data on coverage factors. The data from the field research were processed using four machine learning models: quantile random forest (QRF), support vector regression with radial basis function kernel (SVR), Bayesian Regularization for Feed-Forward Neural Networks (BRNN), and Ensemble Machine Learning (ENS). Nozzle type had the highest predictive value for the properties of number of droplets per cm2 (axial = 69.1%; radial = 66.0%), droplet diameter (axial = 30.6%; radial = 38.2%), and area coverage (axial = 24.6%; radial = 34.8%). Spraying norm had the greatest predictive value for area coverage (axial = 43.3%; radial = 26.9%) and drift (axial = 72.4%; radial = 62.3%). Greater coverage of the treated area and a greater number of droplets were achieved with the radial sprayer, as well as less drift. The accuracy of the machine learning model for the prediction of the treated surface showed a satisfactory accuracy for most properties (R2 = 0.694–0.984), except for the estimation of the droplet diameter for an axial sprayer (R2 = 0.437–0.503).

Publisher

MDPI AG

Reference54 articles.

1. Cerruto, E., Manetto, G., Papa, R., and Longo, D. (2021). Modelling spray pressure effects on droplet size distribution from agricultural nozzles. Appl. Sci., 11.

2. Impact of technical spraying factors on leaf area coverage in a vineyard;Zebec;Agron. J.,2016

3. Impact of selective application with ultrasonic sensors on drift and liquid deposit in the cherry orchard;Duvnjak;Poljoprivreda,2019

4. The Impact of Conventional and Sensor Spraying on Drift and Deposit in Cherry Orchard;Banaj;Teh. Vjesn.,2019

5. Multivariate Analysis Applied to the Ground Application of Pesticides in the Corn Crop;Palma;AgriEngineering,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3