Highly Effective Fe-Doped Nano Titanium Oxide for Removal of Acetamiprid and Atrazine under Simulated Sunlight Irradiation

Author:

Liu Zhanpeng1,Lin Junjian1,Xu Zhimin1,Li Fangfang2,Wang Siyao12,Gao Peng3,Xiong Guomei1,Peng Hongbo12

Affiliation:

1. Faculty of Modern Agricultural Engineering, Kunming University of Science & Technology, Kunming 650500, China

2. Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China

3. City College, Kunming University of Science & Technology, Kunming 650051, China

Abstract

Pesticides are widely detected in large quantities in the environment, posing an ecological threat to the human body and ecology. Semiconductor nanomaterials such as nano-titania (nTiO2) have strong photocatalytic degradation efficiency for pollutants. However, the wide bandgap and limited light absorption range inhibit nano-titania’s practical application. Therefore, nTiO2 was modified by Fe3+ doping using the microwave hydrothermal method to improve its photocatalytic performance in this study. Fe-nTiO2 doped with a 1.0% mass ratio was used due to its high photocatalytic performance. Its maximum degradation efficiencies for ACE and ATZ under a 20 W xenon lamp were 88% and 88.5%, respectively. It was found that Fe3+ doping modification distorted the spatial morphology of nTiO2 and shortened the bandgap to facilitate the photocatalytic reaction. The electron paramagnetic resonance results showed that the reactive radicals (1O2, ·OH) produced by photogenerated electrons (e−) and holes (h+) of Fe-nTiO2 were the main active species in the degradation of ACE and ATZ. Additionally, the application of Fe-nTiO2 significantly enhanced the growth of lettuce under sunlight; the degradation efficiencies of ACE and ATZ in lettuce were 98.5% and 100%, respectively. This work provides new insights into the removal of organic contaminants by photocatalysts under sunlight in agriculture.

Funder

Yunnan Fundamental Research Projects

Yunnan Talent Support Plan Projects, the Recruitment Program of Highly-Qualified Scholars in Kunming University of Science and Technology

Yunnan Major Scientific and Technological Projects

National Scientific Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3