Simulated Assessment of Summer Maize Drought Loss Sensitivity in Huaibei Plain, China

Author:

Wei Yanqi,Jin Juliang,Jiang Shangming,Ning Shaowei,Cui Yi,Zhou YuliangORCID

Abstract

In an agricultural drought risk system, crop drought loss sensitivity evaluation is a fundamental link for quantitative agricultural drought loss risk assessment. Summer maize growth processes under various drought patterns were simulated using the Cropping System Model (CSM)-CERES-maize, which was calibrated and validated based on pit experiments conducted in the Huaibei Plain during 2016 and 2017 seasons. Then S-shaped maize drought loss sensitivity curve was built for fitting the relationship between drought hazard index intensity at a given stage and the corresponding dry matter accumulation and grain yield loss rate, respectively. Drought stress reduced summer maize evapotranspiration, dry matter, and yield accumulation, and the reductions increased with the drought intensity at each stage. Moreover, the losses caused by drought at different stages were significantly different. When maize plants were exposed to a severe water deficit at the jointing stage, the dry matter and grain yield formation were greatly affected. Therefore, maize growth was more sensitive to drought stress at the jointing stage when the stress was serious. Furthermore, when plants encountered a relatively slight drought during the seedling or jointing stage, which represented as a lower soil water deficit intensity, the grain yield loss rates approached the maximum for the sensitivity curves of these two stages. Therefore, summer maize tolerance to water deficit at the seedling and jointing stages were weak, and yield formation was more sensitive to water deficit during these two stages when the deficit was relatively slight.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3