An Endophytic Fungal Isolate Paecilomyces lilacinus Produces Bioactive Secondary Metabolites and Promotes Growth of Solanum lycopersicum under Heavy Metal Stress

Author:

Musa Muhammad1,Jan Farzana Gul1,Hamayun Muhammad1ORCID,Jan Gul1,Khan Sumera Afzal2,Rehman Gauhar3ORCID,Ali Sajid4ORCID,Lee In-Jung5

Affiliation:

1. Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan

2. Center of Biotechnology and Microbiology, University of Peshawar, Peshawar 25120, KP, Pakistan

3. Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan

4. Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea

5. Department of Applied Biosciences, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

Heavy metal (HM) contamination in the soil and accumulation in plants poses a serious threat to crops and human health. HMs such as cadmium, mercury, lead and arsenic are widely acknowledged for their adverse effects on plants such as chlorosis, necrosis, low food quality and crop yields. Endophytic fungi secrete secondary metabolites and enhance the plant’s ability to tolerate stressful conditions. However, the role of most fungal endophytes in their host plant growth or production of metabolites under HM stress conditions needs further understanding. In the present study, we studied the HM stress alleviation capability of the endophytic fungus, Paecilomyces lilacinus (MRF), isolated from the roots of Justicia adathoda. We studied two heavy metals, namely lead and cobalt. The culture filtrate (CF) of P. lilacinus revealed IAA (68.17 µg/mL), phenols (43.31 µg/mL), flavonoids (40.59 µg/mL), sugar content (97.83 µg/mL) and proline (17 µg/mL). Additionally, DPPH-free radical scavenging activity and the antibacterial potential against Salmonella typhi and Shigella sonnei of the CF demonstrated positive results. The gas chromatography mass spectrometry analysis of the CF manifested different constituents, including (1) Trichloromethane, (2) 3,7,11,15-Tetramethyl-2-hexadecen-1-ol, (3) phytol, (4) 1,2-Benzenedicarboxylic acid, (5) bis(2-ethylhexyl) ester, (6) squalene and (7) Cyclotrisiloxane Hexamethyl. Moreover, the plant growth-promoting activity of the P. lilacinus (MRF) strain revealed a robust increase in root and shoot growth, and the fresh and dry weight of S. lycoprsicum. Further, the IAA, phenols, flavonoids, sugar, proline, relative water content and protein contents also increased in the S. lycoprsicum inoculated with P. lilacinus as compared to the control plants. The present study revealed that the inoculation of P. lilacinus alleviates the damages of HM stress and improves the physicochemical characteristics of S. lycoprsicum.

Funder

Korea government

I.-J.L.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3