Development and Evaluation of a Watermelon-Harvesting Robot Prototype: Vision System and End-Effector

Author:

Rong JiachengORCID,Fu Jun,Zhang Zhiqin,Yin Jinliang,Tan Yuzhi,Yuan Ting,Wang PengboORCID

Abstract

Over the past decade, there have been increasing attempts to integrate robotic harvesting technology into agricultural scenarios to reduce growing labour costs and increase crop yields. In this paper, we demonstrate a prototype harvesting robot for picking watermelons in greenhouses. For robotic harvesting, we design a dedicated end-effector for grasping fruits and shearing pedicels, which mainly consists of a flexible gripper and a cutting device. The improved YOLOv5s–CBAM is employed to locate the watermelon fruits with 89.8% accuracy on the test dataset, while the K-means method is used to further refine the segmentation of the watermelon point cloud in the region of interest. Then, the ellipsoid is fitted with the segmented fruit point cloud to obtain the lowest point of the ellipsoid as the grasping point. A series of tests conducted in a laboratory simulation scenario proved that the overall harvesting success rate was 93.3% with a positioning error of 8.7 mm when the watermelon was unobstructed. The overall harvesting success rate was 85.0% with a positioning error of 14.6 mm when the watermelon was partially obscured by leaves.

Funder

the National key R&D Program of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3