Quantitative Relationship of Plant Height and Leaf Area Index of Spring Maize under Different Water and Nitrogen Treatments Based on Effective Accumulated Temperature

Author:

Yang Tingrui12ORCID,Zhao Jinghua12,Fu Qiuping12

Affiliation:

1. College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China

2. Xinjiang Key Laboratory of Hydraulic Engineering Safety and Water Disaster Prevention, Urumqi 830052, China

Abstract

To optimize the growth management of spring maize, it is essential to understand the dynamics of plant height and leaf area index (LAI) under controlled water and nitrogen supply. This study conducted two-year field experiments (2022–2023) in Karamay, Xinjiang. Three irrigation levels (75%, 100%, and 125% of Crop Evapotranspiration (ETc)) and four nitrogen application rates (0, 93, 186, and 279 kg N/ha) were set. A logistic growth model was fitted using accumulated effective temperature as the independent variable to analyze the growth and development characteristics of spring maize under various water and nitrogen conditions. The results demonstrated that the logistic models, based on relative effective accumulated temperature, had a determination coefficient (R2) of over 0.99 and a Normalized Root Mean Square Error (NRMSE) of less than 10%. Irrigation extended the rapid growth phase of plant height, whereas nitrogen application shortened the time to enter this rapid growth phase and prolonged its duration. Irrigation increased the maximum LAI growth rate and shortened and prolonged the rapid growth phase, while nitrogen extended the duration of the rapid growth phase for LAI. The W2N2 treatment, consisting of 100% ETc irrigation and 186 kg N/ha, was identified as the optimal drip irrigation water–nitrogen combination for spring maize in the study area. Under optimal water and nitrogen supply, both the maximum growth rate and the average growth rate during the rapid growth phase were higher, requiring accumulated effective temperatures of 825.16–845.74 °C·d and 856.68–890.00 °C·d, respectively, to reach these rates. The appropriate water and nitrogen supply significantly enhanced the synergistic promotion of growth and development in spring maize. This study provides a theoretical basis for the quantitative analysis of growth dynamics in summer maize using effective accumulated temperature.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3