Identifying Suitable Genotypes for Different Cassava Production Environments—A Modeling Approach

Author:

Phoncharoen PhanupongORCID,Banterng PoramateORCID,Vorasoot Nimitr,Jogloy SanunORCID,Theerakulpisut Piyada,Hoogenboom GerritORCID

Abstract

Crop simulation models can be used to identify appropriate genotypes and growing environments for improving cassava yield. The aim of this study was to determine the best genotypes for different cassava production environments using the cropping system model (CSM)–MANIHOT–Cassava. Data from cassava experiments that were conducted from 2009–2011 and 2014–2015 at Khon Kaen, Thailand, were used to evaluate the model. Simulations were then conducted for different scenarios using four cassava genotypes (Kasetsart 50, Rayong 9, Rayong 11, and CMR38–125–77), twelve planting dates (at monthly intervals starting in January and ending in December), and ten locations in Thailand under fully irrigated and rainfed conditions using 30 years of historical weather data. Model evaluation with the experimental data for total biomass and storage root yield indicated that the model classified well for relative productivity among different planting dates. The model indicated that growing cassava under irrigated conditions generally produced higher biomass and storage root yield than under rainfed conditions. The cassava genotype CMR38–125–77 was identified for high biomass, while the genotype Rayong 9 was identified as a good genetic resource for high yield. The December planting date resulted in the highest biomass for all locations, while the February planting date produced the highest storage root yield for almost all locations. The results from this study suggest that the CSM–MANIHOT–Cassava model can assist in determining suitable genotypes for different cassava production environments for Thailand, and that this approach could be applicable to other cassava growing areas.

Funder

National Science and Technology Development Agency

Thailand Research Fund

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference55 articles.

1. Sustainable Soil and Crop. Management of Cassava in Asia;Howeler,2014

2. World Map of the Köppen-Geiger climate classification updated

3. Agricultural Statistics of Thailand, 2018,2018

4. FAOhttp://www.fao.org/faostat/en/#data/QC

5. Save and Grow: Cassava, a Guide to Sustainable Production Intensification;Howeler,2013

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3