Analysis of Using Machine Learning Techniques for Estimating Solar Panel Performance in Edge Sensor Devices

Author:

Dobrilovic Dalibor1,Pekez Jasmina1ORCID,Ognjenovic Visnja1,Desnica Eleonora1

Affiliation:

1. Technical Faculty “Mihajlo Pupin” Zrenjanin, University of Novi Sad, 23000 Zrenjanin, Serbia

Abstract

The importance of the usage of renewable energy sources in powering wireless sensor nodes in IoT and sensor networks grows together with the increasing number of utilized sensor nodes. Considering the other types of renewable energy sources, solar power differs as the most suitable one and emerges as the major source for powering sensor nodes. Thus, the consideration of using sensor nodes and collected sensor data for estimating solar panel performances and therefore solar power potential can improve the efforts in this direction. This paper presents the methodology for implementing edge intelligence on wireless sensor nodes for solar panel output voltage estimation and forecasting. The methodology covers the usage of the Python Scikit-learn package and micromlgen library for the implementation of edge intelligence on Arduino clone-based sensor nodes, particularly the development boards based on the ESP8266 chips. Scikit-learn is used for analyzing the efficiency of various regressors on collected solar data. The micromlgen library is then used for implementing those regressors on Arduino and clone nodes. The prediction of solar panel voltage generation is based on a single-sensor reading—UV or BH1750 light sensor. The Random Forest and Decision Tree regressors are implemented on the ESP8266-based development board—Wemos D1 R2. The estimation accuracy of the RF model is an MSE of approximately 0.10, MAE of 0.07 for UV and 0.04 for BH1750, and an R2 of approximately 0.93 for both UV and BH1750 light sensors. The Decision Tree model has a lower accuracy with an MSE between 0.13 and 0.14, MAE of 0.07 for UV and 0.04 for BH1750, and R2 of 0.90 and 0.89 for the UV and BH1750 sensors, respectively. The methodology and its efficiency are presented and discussed in this paper.

Funder

Provincial Secretariat for Higher Education and Scientific Research

Publisher

MDPI AG

Reference43 articles.

1. The Many Faces of Edge Intelligence;Peltonen;IEEE Access,2022

2. Gorjian, S., and Shukla, A. (2020). Photovoltaic Solar Energy Conversion—Technologies, Applications and Environmental Impacts, Academic Press. [1st ed.].

3. An overview on edge computing research;Cao;IEEE Access,2020

4. Edge intelligence secure frameworks: Current state and future challenges;Rodriguez;Comput. Secur.,2023

5. Information fusion for edge intelligence: A survey;Zhang;Inf. Fusion,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3