Study of the Mechanical Performance of Grid-Reinforced Concrete Beams with Basalt Fiber-Reinforced Polymers

Author:

Li Haoran1,Qi Yujun1,Li Yifei1,Bao Sai1,Song Zhongzheng1

Affiliation:

1. Centre for Innovative Structures, College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China

Abstract

Basalt fiber-reinforced polymers (BFRPs) can reduce construction costs and mitigate corrosion-related issues associated with steel-reinforced concrete structures. There is limited research on completely substituting steel cages with composite material grid structures. Combining BFRP grids with concrete is an effective solution to address the issue of poor corrosion resistance; BFRP grids also have a good bond with steel-reinforced concrete. Therefore, this paper introduces a novel BFRP grid-reinforced concrete beam. Flexural tests indicate that grid frameworks with 3 mm and 5 mm thickness combined with concrete exhibit higher flexural load-bearing capacity. Shear tests show that the shear load-bearing capability is influenced by the shear span ratio. Shear load-bearing capacity decreases when the shear span ratio rises, but only up to a certain point. Theoretical calculations for grid-reinforced concrete beams are made to demonstrate good conformity with test values. Based on the research findings, design recommendations and precise measurements for the internal grid frameworks for composite material grid-reinforced concrete beams are provided.

Funder

National Natural Science Foundation of China

Qing Lan Project of Jiangsu Province

Outstanding Youth Foundation of Natural Science Foundation of Jiangsu Province

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3