Cost Analysis of Synchronous Condenser Transformed from Thermal Unit Based on LCC Theory

Author:

Li Chenghao,Liu Mingyang,Guo Yi,Ma Hanqing,Wang Hua,Yuan Xiaoling

Abstract

With the development of large-scale renewable energy consumption and multi-infeed high voltage direct current (HVDC) systems, the demand of a system for the synchronous condensers with a strong dynamic reactive power support capacity and a strong short-time overload capacity is increasing. Meanwhile, with the reuse of a large number of retired thermal units, the most practical and economic way is to transform thermal units into synchronous condensers. The cost difference in the life-cycle of the synchronous condenser transformed from a thermal unit (SCTTU) and the newly established synchronous condenser (NESC) is a key factor that affects the decision-making and construction of the transformation from thermal unit to synchronous condenser. However, the life-cycle cost (LCC) of the synchronous condenser transformed from a thermal unit and the newly established synchronous condenser contains many uncertain factors, which affect the accuracy of the LCC estimation value. In order to quantify the impact of the blind information on the cost of the synchronous condenser station, blind number theory is introduced to establish the blind number model of the LCC of the synchronous condenser transformed from a thermal unit and the newly established synchronous condenser. Additionally, the LCC of the NESC and SCTTU with a different life-cycle under the capacity of 2 × 300 MVar are estimated. The results show that the cost of the SCTTU with a long service life of more than 15 years is significantly lower than that of the NESC and, thus, the SCTTU has better economic performance. The economic performance of the SCTTU with a life-cycle of less than 15 years is not better than that of the NESC. Compared with the traditional calculation method of a single cost value, the blind number model can obtain the possible distribution interval of LCC and the reliability of the corresponding interval, which makes the estimation results more valuable for practical engineering reference.

Funder

the Science and Technology Project of SGCC in 2022

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference25 articles.

1. Overview on stability measures for large disturbances of UHVDC;Qiu;Power Syst. Technol.,2022

2. Synchronous condenser optimized configuration scheme for power grid voltage support strength improvement;Zhou;Power Syst. Technol.,2021

3. Optimal Allocation and Sizing of Synchronous Condensers in Weak Grids With Increased Penetration of Wind and Solar Farms

4. Application of the new generation large capacity synchronous condenser in HVDC system;Zhilin;IOP Conf. Ser. Earth Environ. Sci.,2019

5. Building a New Electric Power System Based on New Energy Sources

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3