Development of Quantitative Real-Time PCR for Detecting Environmental DNA Derived from Marine Macrophytes and Its Application to a Field Survey in Hiroshima Bay, Japan

Author:

Hamaguchi Masami,Miyajima Toshihiro,Shimabukuro Hiromori,Hori MasakazuORCID

Abstract

The sequestration and storage of carbon dioxide by marine macrophytes is called blue carbon; this ecosystem function of coastal marine ecosystems constitutes an important countermeasure to global climate change. The contribution of marine macrophytes to blue carbon requires a detailed examination of the organic carbon stock released by these macrophytes. Here, we introduce a quantitative real-time polymerase chain reaction (qPCR)-based environmental DNA (eDNA) system for the species-specific detection of marine macrophytes. and report its application in a field survey in Hiroshima Bay, Japan. A method of qPCR-based quantification was developed for mangrove, seagrass, Phaeophyceae, Rhodophyta and Chlorophyta species, or species-complex, collected from the Japanese coast to investigate their dynamics after they wither and die in the marine environment. A trial of the designed qPCR system was conducted using sediment samples from Hiroshima Bay. Ulva spp. were abundant in coastal areas of the bay, yet their eDNA in the sediments was scarce. In contrast, Zostera marina and the Sargassum subgenus Bactrophycus spp. were found at various sites in the bay, and high amounts of their eDNA were detected in the sediments. These results suggest that the fate of macrophyte-derived organic carbon after death varies among species.

Funder

Japan Society for the Promotion of Science

the Ministry of Agriculture, Forestry and Fisheries of Japan

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference95 articles.

1. Blue Carbon: The Role of Healthy Oceans in Binding Carbon. A Rapid Response Assessment,2009

2. Blue Carbon -CO2 Uptake and Carbon Storage in Shallow Coastal Ecocystems and Their Utilization;Hori,2017

3. Blue carbon: Characteristics of the Ocean’s sequestration and storage ability of carbon Dioxide;Hori,2018

4. The blue carbon wealth of nations

5. Sequestration of macroalgal carbon: the elephant in the Blue Carbon room

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3