Sustainable Energy Production in Smart Cities

Author:

Salama Ramiz1,Al-Turjman Fadi23ORCID

Affiliation:

1. Department of Computer Engineering, AI and Robotics Institute, International Research Center for AI and IoT, Near East University, Mersin 10, Nicosia 99138, Turkey

2. Artificial Intelligence Engineering Department, AI and Robotics Institute, International Research Center for AI and IoT, Near East University, Mersin 10, Nicosia 99138, Turkey

3. Research Center for AI and IoT, Faculty of Engineering, University of Kyrenia, Mersin 10, Kyrenia 99320, Turkey

Abstract

Finding a method to provide the installed Internet of Things (IoT) nodes with energy that is both ubiquitous and long-lasting is crucial for ensuring continuous smart city optimization. These and other problems have impeded new research into energy harvesting. After the COVID-19 pandemic and the lockdown that all but ended daily activity in many countries, the ability of human remote connections to enforce social distancing became crucial. Since they lay the groundwork for surviving a lockdown, Internet of Things (IoT) devices are once again widely recognised as crucial elements of smart cities. The recommended solution of energy collection would enable IoT hubs to search for self-sustaining energy from ecologically large sources. The bulk of urban energy sources that could be used were examined in this work, according to descriptions made by researchers in the literature. Given the abundance of free resources in the city covered in this research, we have also suggested that energy sources can be application-specific. This implies that energy needs for various IoT devices or wireless sensor networks (WSNs) for smart city automation should be searched for near those needs. One of the important smart, ecological and energy-harvesting subjects that has evolved as a result of the advancement of intelligent urban computing is intelligent cities and societies. Collecting and exchanging Internet of Things (IoT) gadgets and smart applications that improve people’s quality of life is the main goal of a sustainable smart city. Energy harvesting management, a key element of sustainable urban computing, is hampered by the exponential rise of Internet of Things (IoT) sensors, smart apps, and complicated populations. These challenges include the requirement to lower the associated elements of energy consumption, power conservation, and waste management for the environment. However, the idea of energy-harvesting management for sustainable urban computing is currently expanding at an exponential rate and requires attention due to regulatory and economic constraints. This study investigates a variety of green energy-collecting techniques in relation to edge-based intelligent urban computing’s smart applications for sustainable and smart cities. The four categories of energy-harvesting strategies currently in use are smart grids, smart environmental systems, smart transportation systems, and smart cities. In terms of developed algorithms, evaluation criteria, and evaluation environments, this review’s objective is to discuss the technical features of energy-harvesting management systems for environmentally friendly urban computing. For sustainable smart cities, which specifically contribute to increasing the energy consumption of smart applications and human life in complex and metropolitan areas, it is crucial from a technical perspective to examine existing barriers and unexplored research trajectories in energy harvesting and waste management.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3