Antitumoral and Immunogenic Capacity of β-D-Glucose—Reduced Silver Nanoparticles in Breast Cancer

Author:

Félix-Piña Pedro1ORCID,Franco Molina Moisés Armides1ORCID,Zarate Triviño Diana Ginette1,García Coronado Paola Leonor1ORCID,Zapata Benavides Pablo1,Rodríguez Padilla Cristina1ORCID

Affiliation:

1. Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, NL, Mexico

Abstract

Immunogenic cell death (ICD) is a type of cell death capable of stimulating immunity against cancer through danger signals that lead to an adaptive immune response. Silver nanoparticles (AgNPs) have been shown to have a cytotoxic effect on cancer cells; however, their mechanism of action is not fully understood. The present study synthesized, characterized, and evaluated the cytotoxic effect of beta-D-glucose-reduced AgNPs (AgNPs-G) against breast cancer (BC) cells in vitro; and assess the immunogenicity of cell death in vitro and in vivo. The results showed that AgNPs-G induce cell death in a dose-dependent manner on BC cell lines. In addition, AgNPs show antiproliferative effects by interfering with the cell cycle. Regarding the detection of damage-associated molecular patterns (DAMPs), it was found that treatment with AgNPs-G induces calreticulin exposure and the release of HSP70, HSP90, HMGB1, and ATP. In vivo, prophylactic vaccination did not prevent tumor establishment; however, tumor weight was significantly lower in AgNPs-G vaccinated mice, while the survival rate increased. In conclusion, we have developed a new method for the synthesis of AgNPs-G, with in vitro antitumor cytotoxic activity on BC cells, accompanied by the release of DAMPs. In vivo, immunization with AgNPs-G failed to induce a complete immune response in mice. Consequently, additional studies are needed to elucidate the mechanism of cell death that leads to the design of strategies and combinations with clinical efficacy.

Funder

the Fondo Sectorial de Investigación para la Educación

Facultad de Ciencias Biológicas from the Universidad Autónoma de Nuevo León

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference31 articles.

1. Breast Cancer: Current Perspectives on the Disease Status;Fahad;Adv. Exp. Med. Biol.,2019

2. Molecular Classification of Breast Cancer;Tsang;Adv. Anat. Pathol.,2020

3. Breast Cancer Treatment: A Review;Waks;JAMA,2019

4. Multidisciplinary breast cancer teams and proposed standards;Ulus. Cerrahi Derg.,2014

5. The Incidence of Breast Cancer Recurrence 10–32 Years After Primary Diagnosis;Pedersen;J. Natl. Cancer Inst.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3