Protective Effects of Roselle Aqueous Extracts against UV-Induced Damage in Zebrafish Fins

Author:

Lee I-Ting1,Huang Ching-Yuan1,Su Wei-Lin1,Truong Tran M.1ORCID,Wen Chi-Chung2ORCID,Wang Bo-Chang1,Chen Yau-Hung1ORCID

Affiliation:

1. Department of Chemistry, Tamkang University, Tamsui, New Taipei City 25137, Taiwan

2. Department of Mathematics, Tamkang University, Tamsui, New Taipei City 25137, Taiwan

Abstract

(1) Background: Roselle (Hibiscus sabdariffa) is a flowering plant reported to have anti-obesity, antioxidant, antibacterial, and anti-inflammatory effects. This study aims to evaluate the UV-absorbing and antioxidant activities of roselle aqueous extracts (RAE) and test the protective effects of RAE against UV radiation in zebrafish embryos. (2) Methods: DPPH assay and UV-spectrum methods were applied to evaluate the antioxidant and UV-absorbing activities, respectively. The protective effects of RAE were evaluated using fin morphology recording, Kaplan–Meier analysis, and Cox proportional hazards regression. Real-time PCR experiments were also applied to detect both the UV- and RAE-induced gene expressions. (3) Results: Our results show that (i) RAE had UV-absorbing abilities and significantly reduced ROS production in vitro; (ii) the mean times of malformed fins in the UV + RAE (36 and 48 ppm) groups were 3.56 and 4.44 days, respectively, and were prolonged compared to those in the UV-only group (3.36 days); (iii) zebrafish in the UV + RAE (36 and 48 ppm) groups were 0.963 and 0.496 (p < 0.001) times more likely to develop to malformed fins, respectively, than those in the UV-only group; and (iv) the RAE treatment led to the 0.19- to 0.62-fold downregulation of the p53, p21, mdm2, and bcl2 gene expressions, compared to the UV-only group. (4) Conclusions: The UV-protective effects of RAE might derive from both the in vitro UV-absorbing activity and in vivo regulation of the p53, p21, mdm2, and bcl2 gene expressions.

Funder

National Science and Technology Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3