Building Low-Cost Sensing Infrastructure for Air Quality Monitoring in Urban Areas Based on Fog Computing

Author:

Popović IvanORCID,Radovanovic IlijaORCID,Vajs Ivan,Drajic DejanORCID,Gligorić Nenad

Abstract

Because the number of air quality measurement stations governed by a public authority is limited, many methodologies have been developed in order to integrate low-cost sensors and to improve the spatial density of air quality measurements. However, at the large-scale level, the integration of a huge number of sensors brings many challenges. The volume, velocity and processing requirements regarding the management of the sensor life cycle and the operation of system services overcome the capabilities of the centralized cloud model. In this paper, we present the methodology and the architectural framework for building large-scale sensing infrastructure for air quality monitoring applicable in urban scenarios. The proposed tiered architectural solution based on the adopted fog computing model is capable of handling the processing requirements of a large-scale application, while at the same time sustaining real-time performance. Furthermore, the proposed methodology introduces the collection of methods for the management of edge-tier node operation through different phases of the node life cycle, including the methods for node commission, provision, fault detection and recovery. The related sensor-side processing is encapsulated in the form of microservices that reside on the different tiers of system architecture. The operation of system microservices and their collaboration was verified through the presented experimental case study.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference49 articles.

1. Fog Computing Applications in Smart Cities: A Systematic Survey

2. Global Health Observatory (GHO) Datahttps://www.who.int/gho/urban_health/situation_trends/urban_population_growth_text/en/

3. Environment Programme Environment for Developmenthttp://www.unep.org/resourceefficiency/Policy/ResourceEfficientCities/FocusAreas/CitiesandClimateChange/tabid/101665/Default.aspx

4. The rise of low-cost sensing for managing air pollution in cities

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3