Hyperparameter Optimization for 1D-CNN-Based Network Intrusion Detection Using GA and PSO

Author:

Kilichev Dusmurod1ORCID,Kim Wooseong1ORCID

Affiliation:

1. Department of Computer Engineering, Gachon University, Seongnam 1342, Gyeonggi, Republic of Korea

Abstract

This study presents a comprehensive exploration of the hyperparameter optimization in one-dimensional (1D) convolutional neural networks (CNNs) for network intrusion detection. The increasing frequency and complexity of cyberattacks have prompted an urgent need for effective intrusion-detection systems (IDSs). Herein, we focus on optimizing nine hyperparameters within a 1D-CNN model, using two well-established evolutionary computation methods—genetic algorithm (GA) and particle swarm optimization (PSO). The performances of these methods are assessed using three major datasets—UNSW-NB15, CIC-IDS2017, and NSL-KDD. The key performance metrics considered in this study include the accuracy, loss, precision, recall, and F1-score. The results demonstrate considerable improvements in all metrics across all datasets, for both GA- and PSO-optimized models, when compared to those of the original nonoptimized 1D-CNN model. For instance, on the UNSW-NB15 dataset, GA and PSO achieve accuracies of 99.31 and 99.28%, respectively. Both algorithms yield equivalent results in terms of the precision, recall, and F1-score. Similarly, the performances of GA and PSO vary on the CIC-IDS2017 and NSL-KDD datasets, indicating that the efficacy of the optimization algorithm is context-specific and dependent on the nature of the dataset. The findings of this study demonstrate the importance and effects of efficient hyperparameter optimization, greatly contributing to the field of network security. This study serves as a crucial step toward developing advanced, robust, and adaptable IDSs capable of addressing the evolving landscape of cyber threats.

Funder

Gachon University Research Fund

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SoK: quantum computing methods for machine learning optimization;Quantum Machine Intelligence;2024-07-24

2. Optimizing Inventory and Pricing for Substitute Products with Soft Supply Constraints;Mathematics;2024-06-04

3. A systematic review of hyperparameter optimization techniques in Convolutional Neural Networks;Decision Analytics Journal;2024-06

4. Exploration of Genetic Algorithm-Driven Hyperparameter Optimization for Convolutional Neural Networks;2024 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream);2024-04-25

5. Network Intrusion Detection with Feature Elimination and Selection Using Deep Learning;2024 International Conference on Emerging Technologies in Computer Science for Interdisciplinary Applications (ICETCS);2024-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3