Maternal Iron Deficiency and Environmental Lead (Pb) Exposure Alter the Predictive Value of Blood Pb Levels on Brain Pb Burden in the Offspring in a Dietary Mouse Model: An Important Consideration for Cumulative Risk in Development

Author:

Cubello Janine1,Peterson Derick R.2ORCID,Wang Lu2,Mayer-Proschel Margot3ORCID

Affiliation:

1. Department of Environmental Medicine, University of Rochester, Rochester, NY 14642, USA

2. Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY 14642, USA

3. Department of Biomedical Genetics, University of Rochester, Rochester, NY 14642, USA

Abstract

Maternal iron deficiency (ID) and environmental lead (Pb) exposure are co-occurring insults that both affect the neurodevelopment of offspring. Few studies have investigated how ID affects brain-region-specific Pb accumulations using human-relevant Pb concentrations. Furthermore, how these Pb exposures impact blood and brain Fe levels remains unclear. Importantly, we also wanted to determine whether the use of blood Pb levels as a surrogate for the brain Pb burden is affected by underlying iron status. We exposed virgin Swiss Webster female mice to one of six conditions differing by iron diet and Pb water concentration (0 ppm, 19 ppm, or 50 ppm lead acetate) and used Inductively Coupled Plasma Mass Spectrometry to measure the maternal and offspring circulating, stored, and brain Pb levels. We found that maternal ID rendered the offspring iron-deficient anemic and led to a region-specific depletion of brain Fe that was exacerbated by Pb in a dose-specific manner. The postnatal iron deficiency anemia also exacerbated cortical and hippocampal Pb accumulation. Interestingly, BPb levels only correlated with the brain Pb burden in ID pups but not in IN offspring. We conclude that ID significantly increases the brain Pb burden and that BPb levels alone are insufficient as a clinical surrogate to make extrapolations on the brain Pb burden.

Funder

National Institute of Health

Toxicology T32 Training

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3