Exchange Bias Demonstrated in Bulk Nanocomposites Processed by High-Pressure Torsion

Author:

Zawodzki Michael,Weissitsch LukasORCID,Krenn HeinzORCID,Wurster StefanORCID,Bachmaier AndreaORCID

Abstract

Ferromagnetic (Fe or Fe20Ni80) and antiferromagnetic (NiO) phases were deformed by high-pressure torsion, a severe plastic deformation technique, to manufacture bulk-sized nanocomposites and demonstrate an exchange bias, which has been reported predominantly for bilayer thin films. High-pressure torsion deformation at elevated temperatures proved to be the key to obtaining homogeneous bulk nanocomposites. X-ray diffraction investigations detected nanocrystallinity of the ferromagnetic and antiferromagnetic phases. Furthermore, an additional phase was identified by X-ray diffraction, which formed during deformation at elevated temperatures through the reduction of NiO by Fe. Depending on the initial powder composition of Fe50NiO50 or Fe10Ni40NiO50 the new phase was magnetite or maghemite, respectively. Magnetometry measurements demonstrated an exchange bias in high-pressure torsion-processed bulk nanocomposites. Additionally, the tailoring of magnetic parameters was demonstrated by the application of different strains or post-process annealing. A correlation between the amount of applied strain and exchange bias was found. The increase of exchange bias through applied strain was related to the microstructural refinement of the nanocomposite. The nanocrystalline maghemite was considered to have a crucial impact on the observed changes of exchange bias through applied strain.

Funder

European Research Council

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3