Modeling of Enhanced Polar Magneto-Optic Kerr Effect by Surface Plasmons in Au Bowtie Arrays

Author:

Liu Jingyi,Long LianchunORCID,Yang YangORCID

Abstract

The weak magneto-optical (MO) signal of traditional MO materials is indeed an important issue for their further practical applications. Although many strategies have been proposed to improve the MO effect, hybridization with noble metal nanostructures is a promising route in recent years due to the high localized-surface plasmon resonances (LSPR) effect. A new magneto-optical surface plasmon resonance (MOSPR) structure hybrid with Au bowtie arrays is proposed to increase the measuring range of the polar magneto-optical Kerr effect (PMOKE) and the quality factor through the LSPR effect. It is verified by a numerical simulation of the finite element method (FEM). The optimized parameters were found by modulating the shape and geometric dimensions. Owing to the significant LSPR from the Au bowties, a PMOKE amplification signal spectrum with narrow linewidth, and a high amplitude with high-sensing performance was achieved. Compared with the bare magnetic film alone, by optimizing the relevant parameters of the LSPR structure, the maximum signal increases 3255 times, and the quality factor can be greatly improved, which would provide important guidance and help for the practical application of MO devices.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Beijing

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3