Pressure-Insensitive Epidermal Thickness of Fingertip Skin for Optical Image Encryption

Author:

Li Wangbiao1,Zhang Bo1,Zhang Xiaoman1,Liu Bin1,Li Hui1,Wu Shulian1,Li Zhifang1

Affiliation:

1. The Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center for Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350117, China

Abstract

In this study, an internal fingerprint-guided epidermal thickness of fingertip skin is proposed for optical image encryption based on optical coherence tomography (OCT) combined with U-Net architecture of a convolutional neural network (CNN). The epidermal thickness of fingertip skin is calculated by the distance between the upper and lower boundaries of the epidermal layer in cross-sectional optical coherence tomography (OCT) images, which is segmented using CNN, and the internal fingerprint at the epidermis–dermis junction (DEJ) is extracted based on the maximum intensity projection (MIP) algorithm. The experimental results indicate that the internal fingerprint-guided epidermal thickness is insensitive to pressure due to normal correlation coefficients and the encryption process between epidermal thickness maps of fingertip skin under different pressures. In addition, the result of the numerical simulation demonstrates the feasibility and security of the encryption scheme by structural similarity index matrix (SSIM) analysis between the original image and the recovered image with the correct and error keys decryption, respectively. The robustness is analyzed based on the SSIM value in three aspects: different pressures, noise attacks, and data loss. Key randomness is valid by the gray histograms, and the average correlation coefficients of adjacent pixelated values in three directions and the average entropy were calculated. This study suggests that the epidermal thickness of fingertip skin could be seen as important biometric information for information encryption.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference61 articles.

1. Secure Chaotic Transmission of Electrocardiography Signals with Acousto-Optic Modulation under Profiled Beam Propagation;Almehmadi;Appl. Opt.,2015

2. Optical Techniques for Information Security;Matoba;Proc. IEEE,2009

3. Optical 3D Watermark Based Digital Image Watermarking for Telemedicine;Li;Opt. Lasers Eng.,2013

4. A Review of Optical Image Encryption Techniques;Liu;Opt. Laser Technol.,2014

5. Generating Stable Biometric Keys for Flexible Cloud Computing Authentication Using Finger Vein;Wu;Inf. Sci.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3