Multi-Objective Optimization of Injection Molding Process Parameters for Moderately Thick Plane Lens Based on PSO-BPNN, OMOPSO, and TOPSIS

Author:

Liu Feng12,Pang Jianjun1,Xu Zhiwei3

Affiliation:

1. College of Mechanical and Automotive Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China

2. State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China

3. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China

Abstract

Injection molding (IM) is an ideal technique for the low-cost mass production of moderately thick plane lenses (MTPLs). However, the optical performance of injection molded MTPL is seriously degraded by the warpage and sink marks induced during the molding process with complex historical thermal field changes. Thus, it is essential that the processing parameters utilized in the molding process are properly assigned. And the challenges are further compounded when considering the MTPL molding energy consumption. This paper presents a set of procedures for the optimization of injection molding process parameters, with warpage, sink marks reflecting the optical performance, and clamping force reflecting the molding energy consumption as the optimization objectives. First, the orthogonal experiment was carried out with the Taguchi method, and the S/N response shows that these three objectives cannot reach the optimal values simultaneously. Second, considering the experimental data scale, the back propagation neural network updated by the particle swarm optimization method (PSO-BPNN) was applied to establish the complex nonlinear mapping relationship between the process parameters and these three trade-off objectives respectively. Then, the Pareto optimal frontier of the multi-objective optimization problem was attained by multi-objective particle swarm optimization using a mutation operator and dominance coefficient algorithm (OMOPSO). And the competitive relationship between these objectives was further confirmed by the corresponding pairwise Pareto frontiers. Additionally, the TOPSIS method with equal weights was employed to achieve the best optimal solution from the Pareto optimal frontier. The simulation results yielded that the maximum values of warpage, sink marks, and clamping force could be reduced by 7.44%, 40.56%, and 5.56%, respectively, after optimization. Finally, MTPL products were successfully fabricated.

Funder

Zhejiang Provincial Natural Science Foundation of China

State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology

Key Laboratory for Technology in Rural Water Management of Zhejiang Province

Domestic Visiting Scholar Program for Higher Education Institutions of China

Zhejiang University of Water Resources and Electric Power

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3