Studies into Fungal Decay of Wood in Ground Contact—Part 2: Development of a Dose–Response Model to Predict Decay Rate

Author:

Marais Brendan NicholasORCID,van Niekerk Philip BesterORCID,Brischke ChristianORCID

Abstract

In this article a dose–response model was developed to describe the effect of soil temperature, soil moisture content, and soil water-holding capacity, on the decay of European beech (Fagus sylvatica) wood specimens exposed to soil contact. The developed dose–response model represents a step forward in incorporating soil-level variables into the prediction of wood decay over time. This builds upon prior models such as those developed within the TimberLife software package, but also aligns with similar modeling methodology employed for wood exposed above ground. The model was developed from laboratory data generated from terrestrial microcosm trials which used test specimens of standard dimension, incubated in a range of soil conditions and temperatures, for a maximum period of 16 weeks. Wood mass loss was used as a metric for wood decay. The dose aspect of the developed function modelled wood mass loss in two facets; soil temperature against wood mass loss, and soil water-holding capacity and soil moisture content against wood mass loss. In combination, the two functions describe the wood mass loss as a function of a total daily exposure dose, accumulated over the exposure period. The model was deemed conservative, delivering an overprediction of wood decay, or underprediction of wood service-life, when validated on a similar, but independent dataset (R2 = 0.65). Future works will develop similar models for outdoor, field-trial datasets as a basis for service-life prediction of wooden elements used in soil contact.

Funder

Bundesministerium für Ernährung und Landwirtschaft

Österreichische Forschungsförderungsgesellschaft

Horizon 2020

Publisher

MDPI AG

Subject

Forestry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3