Dynamic Modeling, Simulation, and Optimization of Vehicle Electronic Stability Program Algorithm Based on Back Propagation Neural Network and PID Algorithm

Author:

Wu Zheng1ORCID,Kang Cunfeng1ORCID,Li Borun1,Ruan Jiageng1ORCID,Zheng Xueke1

Affiliation:

1. College of Mechanical and Energy Engineering, Beijing University of Technology, Beijing 100124, China

Abstract

The vehicle lateral stability control algorithm is an essential component of the electronic stability program (ESP), and its control effect directly affects the vehicle’s driving safety. However, there are still numerous shortcomings and challenges that need to be addressed, including enhancing the efficiency of processing intricate pavement condition data, improving the accuracy of parameter adjustment, and identifying subtle and elusive patterns amidst noisy and ambiguous data. The introduction of machine learning algorithms can address the aforementioned issues, making it imperative to apply machine learning to the research of lateral stability control algorithms. This paper presented a vehicle lateral electronic stability control algorithm based on the back propagation (BP) neural network and PID control algorithm. Firstly, the dynamics of the whole vehicle have been analytically modeled. Then, a 2 DOF prediction model and a 14 DOF simulation model were built in MATLAB Simulink to simulate the data of the electronic control units (ECU) in ESP and estimate the dynamic performance of the real vehicle. In addition, the self-correction of the PID algorithm was verified by a Simulink/CarSim combined simulation. The improvement of the BP neural network to the traditional PID algorithm was also analyzed in Simulink. These simulation results show the self-correction of the PID algorithm on the lateral stability control of the vehicle under different road conditions and at different vehicle speeds. The BP neural network smoothed the vehicle trajectory controlled by traditional PID and improved the self-correction ability of the control system by iterative training. Furthermore, it shows that the algorithm can automatically tune the control parameters and optimize the control process of the lateral electronic stability control algorithm, thus improving vehicle stability and adapting it to many different vehicle models and road conditions. Therefore, the algorithm has a high practical value and provides a feasible idea for developing a more intelligent and general vehicle lateral electronic stability system.

Funder

Robot and high-end equipment government funds

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3