Deep Domain Adaptation with Correlation Alignment and Supervised Contrastive Learning for Intelligent Fault Diagnosis in Bearings and Gears of Rotating Machinery

Author:

Zhang Bo1ORCID,Dong Hai1ORCID,Qaid Hamzah A. A. M.2ORCID,Wang Yong2

Affiliation:

1. School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China

2. School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Deep domain adaptation techniques have recently been the subject of much research in machinery fault diagnosis. However, most of the work has been focused on domain alignment, aiming to learn cross-domain features by bridging the gap between source and target domains. Despite the success of these methods in achieving domain alignment, they often overlook the class discrepancy present in cross-domain scenarios. This can result in the misclassification of target domain samples that are located near cluster boundaries or far from their associated class centers. To tackle these challenges, a novel approach called deep domain adaptation with correlation alignment and supervised contrastive learning (DCASCL) is proposed, which synchronously realizes both domain distribution alignment and class distribution alignment. Specifically, the correlation alignment loss is used to enforce the model to generate transferable features, facilitating effective domain distribution alignment. Additionally, classifier discrepancy loss and supervised contrastive learning loss are integrated to carry out feature distribution alignment class-wisely. The supervised contrastive learning loss leverages class-specific information of source and target samples, which efficiently promotes the compactness of samples of the same class and the separation of samples from different classes. Moreover, our approach is extensively validated across three diverse datasets, demonstrating its effectiveness in diagnosing machinery faults across different domains.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3