Author:
Cao Xuan,Yang Fang,Zheng Jingyi,Wang Xiao,Huang Qingling
Abstract
Background: Depression is a prominent and highly prevalent nonmotor feature in patients with Parkinson’s disease (PD). The neural and pathophysiologic mechanisms of PD with depression (DPD) remain unclear. The current diagnosis of DPD largely depends on clinical evaluation. Methods: We proposed a new family of multinomial tensor regressions that leveraged whole-brain structural magnetic resonance imaging (MRI) data to discriminate among 196 non-depressed PD (NDPD) patients, 84 DPD patients, 200 healthy controls (HC), and to assess the special brain microstructures in NDPD and DPD. The method of maximum likelihood estimation coupled with state-of-art gradient descent algorithms was used to predict the individual diagnosis of PD and the development of DPD in PD patients. Results: The results reveal that the proposed efficient approach not only achieved a high prediction accuracy (0.94) with a multi-class AUC (0.98) for distinguishing between NDPD, DPD, and HC on the testing set but also located the most discriminative regions for NDPD and DPD, including cortical regions, the cerebellum, the brainstem, the bilateral basal ganglia, and the thalamus and limbic regions. Conclusions: The proposed imaging technique based on tensor regression performs well without any prior feature information, facilitates a deeper understanding into the abnormalities in DPD and PD, and plays an essential role in the statistical analysis of high-dimensional complex MRI imaging data to support the radiological diagnosis of comorbidity of depression with PD.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献