Rooftop PV Segmenter: A Size-Aware Network for Segmenting Rooftop Photovoltaic Systems from High-Resolution Imagery

Author:

Wang Jianxun1,Chen Xin2,Shi Weiyue1,Jiang Weicheng1,Zhang Xiaopu1,Hua Li2ORCID,Liu Junyi1,Sui Haigang1

Affiliation:

1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China

2. College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China

Abstract

The photovoltaic (PV) industry boom has accelerated the need for accurately understanding the spatial distribution of PV energy systems. The synergy of remote sensing and artificial intelligence presents significant prospects for PV energy monitoring. Currently, numerous studies have focused on extracting rooftop PV systems from airborne or satellite imagery, but their small-scale and size-varying characteristics make the segmentation results suffer from PV internal incompleteness and small PV omission. To address these issues, this study proposed a size-aware deep learning network called Rooftop PV Segmenter (RPS) for segmenting small-scale rooftop PV systems from high-resolution imagery. In detail, the RPS network introduced a Semantic Refinement Module (SRM) to sense size variations of PV panels and reconstruct high-resolution deep semantic features. Moreover, a Feature Aggregation Module (FAM) enhanced the representation of robust features by continuously aggregating deeper features into shallower ones. In the output stage, a Deep Supervised Fusion Module (DSFM) was employed to constrain and fuse the outputs at different scales to achieve more refined segmentation. The proposed RPS network was tested and shown to outperform other models in producing segmentation results closer to the ground truth, with the F1 score and IoU reaching 0.9186 and 0.8495 on the publicly available California Distributed Solar PV Array Dataset (C-DSPV Dataset), and 0.9608 and 0.9246 on the self-annotated Heilbronn Rooftop PV System Dataset (H-RPVS Dataset). This study has provided an effective solution for obtaining a refined small-scale energy distribution database.

Funder

National Natural Science Foundation of China Major Program

Guangxi Science and Technology Major Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3