Enhanced Impact of Land Reclamation on the Tide in the Guangxi Beibu Gulf

Author:

Lu Jingfang1,Zhang Yibo1ORCID,Cao Ruichen1,Lv Xianqing1ORCID,Xu Minjie2,Gao Guandong345ORCID,Liu Qiang6

Affiliation:

1. Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China

2. Ocean School, Yantai University, Yantai 264005, China

3. CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology Chinese Academy of Sciences, Qingdao 266071, China

4. Function Laboratory for Ocean Dynamics and Climate, Qingdao National Laboratory for Marine Science Technology, Qingdao 266237, China

5. Center for Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China

6. College of Engineering, Ocean University of China, Qingdao 266100, China

Abstract

Based on the method for identifying the boundary of movable water bodies (MWBB), the spatial distribution of reclamation projects in the Guangxi Beibu Gulf were identified over the past 40 years and the impact of these engineering facilities on hydrodynamics was also evaluated. The results showed that 163.8 km2 of natural sea areas in the Guangxi Beibu Gulf were occupied through reclamation in the last 40 years. The effects of land reclamation on tidal amplitude were more pronounced in the second period (2001–2018) than in the first period (1987–2001), particularly in the tidal channels of Qinzhou Bay and Fangcheng Bay, where the amplitude difference ranged from 8 to 15 cm, representing a 40–55% increase. The reduction in the sea area because of land reclamation has changed the hydrodynamics in the Guangxi Beibu Gulf, including reducing the tidal volume, altering the amplitude variations, and increasing the seaward residual currents, all of which could cause significant problems for the coastal environment.

Funder

National Key R&D Program of China

National Natural Science Foundation

China-Indonesia Maritime Cooperation Fund “Construction of Ecological Marine Ranching in Indonesia”

Sino-Indonesia Joint Laboratory for Marine Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3