Environment-Friendly Catalytic Mineralization of Phenol and Chlorophenols with Cu- and Fe- Tetrakis(4-aminophenyl)-porphyrin—Silica Hybrid Aerogels

Author:

Győri Enikő,Kecskeméti Ádám,Fábián IstvánORCID,Szarka MátéORCID,Lázár IstvánORCID

Abstract

Fenton reactions with metal complexes of substituted porphyrins and hydrogen peroxide are useful tools for the mineralization of environmentally dangerous substances. In the homogeneous phase, autooxidation of the prophyrin ring may also occur. Covalent binding of porphyrins to a solid support may increase the lifetime of the catalysts and might change its activity. In this study, highly water-insoluble copper and iron complexes of 5,10,15,20-tetrakis(4-aminophenyl)porphyrin were synthesized and bonded covalently to a very hydrophilic silica aerogel matrix prepared by co-gelation of the propyl triethoxysilyl-functionalized porphyrin complex precursors with tetramethoxysilane, followed by a supercritical carbon dioxide drying. In contrast to the insoluble nature of the porphyrin complexes, the as-prepared aerogel catalysts were highly compatible with the aqueous phase. Their catalytic activities were tested in the mineralization reaction of phenol, 3-chlorophenol, and 2,4-dichlorophenol with hydrogen peroxide. The results show that both aerogels catalyzed the oxidation of phenol and chlorophenols to harmless short-chained carboxylic acids under neutral conditions. In batch experiments, and also in a miniature continuous-flow tubular reactor, the aerogel catalysts gradually reduced their activity, due to the slow oxidation of the porphyrin ring. However, the rate and extent of the degradation was moderate and did not exclude the possibility that the as-prepared catalysts, as well as their more stable derivatives, might find practical applications in environment protection.

Funder

European Regional Development Fund

Hungarian Science Foundation

National Research, Development and Innovation Office, Hungary

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Reference48 articles.

1. Chlorinated Phenols: Occurrence, Toxicity, Metabolism, And Environmental Impact

2. Decision No 2455/2001/EC of the European Parliament and of the Council of 20 November 2001 Establishing the List of Priority Substances in the Field of Water Policy and Amending Directive 2000/60/EC http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2001:331:0001:0005:EN:PDF

3. The remediation of wastewater containing 4-chlorophenol using integrated photocatalytic and biological treatment

4. Biodegradation of 4-CP and 2,4-DCP mixture in a rotating biological contactor (RBC)

5. Microbial degradation of chlorinated phenols

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3