Abstract
Automatic fine registration of multisensor images plays an essential role in many remote sensing applications. However, it is always a challenging task due to significant radiometric and textural differences. In this paper, an enhanced subpixel phase correlation method is proposed, which embeds phase congruency-based structural representation, L1-norm-based rank-one matrix approximation with adaptive masking, and stable robust model fitting into the conventional calculation framework in the frequency domain. The aim is to improve the accuracy and robustness of subpixel translation estimation in practical cases. In addition, template matching using the enhanced subpixel phase correlation is integrated to realize reliable fine registration, which is able to extract a sufficient number of well-distributed and high-accuracy tie points and reduce the local misalignment for coarsely coregistered multisensor remote sensing images. Experiments undertaken with images from different satellites and sensors were carried out in two parts: tie point matching and fine registration. The results of qualitative analysis and quantitative comparison with the state-of-the-art area-based and feature-based matching methods demonstrate the effectiveness and reliability of the proposed method for multisensor matching and registration.
Funder
National Key Research and Development Program of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献