Engineering Surface and Optical Properties of TiO2-Coated Electrospun PVDF Nanofibers Via Controllable Self-Assembly

Author:

Yang Jianming,He Fuan,Wu Huijun,Liang Yuying,Wang Yuxuan,Sun Zhi

Abstract

Understanding the effect of a porous TiO2 nanolayer on the optical scattering and absorption through electrospun fibers is of great importance for the design and development of advanced optical extinction materials. Based on electrospinning and controllable self-assembly techniques, pure electrospun poly(vinylidene fluoride) (PVDF) fibers and TiO2-coated ones with different self-assembly cycles were prepared. The effect of TiO2 self-assembly cycles on surface parameters, e.g., thickness, assembled content, and porosity of the TiO2 nanolayer were determined by scanning electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy. With an increase in the self-assembly cycles, the TiO2-coated electrospun PVDF fibers presented rougher surfaces and greater average diameters. According to the characterized surface parameters, the effects of the controllable self-assembly on the optical refractive index, absorption index, and infrared extinction were investigated to increase the optical properties of electrospun PVDF fibers. The results indicated that an increase of almost 120–130 cm−1 in infrared extinction could be achieved through the controllable self-assembly with only 5.7 wt. % assembled TiO2 content. This is highly efficient when compared with other coating modes. We believe that this study could give some positive guidance in the design of TiO2-coated electrospun fibers for improving their surface and optical properties.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3