Identifying and Interpreting Hydrological Model Structural Nonstationarity Using the Bayesian Model Averaging Method

Author:

Gui Ziling1234,Zhang Feng1234,Yue Kedong1234,Lu Xiaorong5,Chen Lin1234,Wang Hao6

Affiliation:

1. Changjiang Survey, Planning, Design and Research Co., Ltd., Wuhan 430010, China

2. Key Laboratory of Changjiang Regulation and Protection of Ministry of Water Resources, Wuhan 430010, China

3. Hubei Provincial Engineering Research Center for Comprehensive Water Environment Treatment in the Yangtze River Basin, Wuhan 430010, China

4. Hubei Key Laboratory of Basin Water Security, Wuhan 430010, China

5. Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430010, China

6. China Institute of Water Resources and Hydropower Research, Beijing 100048, China

Abstract

Understanding hydrological nonstationarity under climate change is important for runoff prediction and it enables more robust decisions. Regarding the multiple structural hypotheses, this study aims to identify and interpret hydrological structural nonstationarity using the Bayesian Model Averaging (BMA) method by (i) constructing a nonstationary model through the Bayesian weighted averaging of two lumped conceptual rainfall–runoff (RR) models (the Xinanjiang and GR4J model) with time-varying weights; and (ii) detecting the temporal variation in the optimized Bayesian weights under climate change conditions. By combining the BMA method with period partition and time sliding windows, the efficacy of adopting time-varying model structures is investigated over three basins located in the U.S. and Australia. The results show that (i) the nonstationary ensemble-averaged model with time-varying weights surpasses both individual models and the ensemble-averaged model with time-invariant weights, improving NSE[Q] from 0.04 to 0.15; (ii) the optimized weights of Xinanjiang model increase and that of GR4J declines with larger precipitation, and vice versa; (iii) the change in the optimized weights is proportional to that of precipitation under monotonic climate change, as otherwise the mechanism changes significantly. Overall, it is recommended to adopt nonstationary structures in hydrological modeling.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Hubei Province

Wuhan Science and Technology Plan Project

Independent Innovation Project of Changjiang Survey, Planning, Design and Research Co., Ltd.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3