Impact of Chemical and Physical Pretreatment on Methane Potential of Peanut Shells

Author:

Oliva Armando12ORCID,Papirio Stefano2ORCID,Esposito Giovanni2ORCID,Lens Piet N. L.1ORCID

Affiliation:

1. Department of Microbiology and Ryan Institute, University of Galway, University Road, H91 TK33 Galway, Ireland

2. Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy

Abstract

The request for alternative sources of energy has led to evaluating untapped routes for energy production, such as using abundant and low-cost waste materials, e.g., lignocellulosic wastes, as the substrate for biological processes aimed at biofuel production. This study focused on peanut shells (PS) valorisation via anaerobic digestion (AD). Two emerging pretreatments, i.e., organosolv and ultrasounds, were investigated to unlock the full AD potential of PS. The impact of a substrate-to-solvent ratio in organosolv pretreatment was investigated (i.e., 1:5 vs. 1:10 vs. 1:20). Different exposure times were tested for ultrasound pretreatment, corresponding to applied energy densities of 30,000, 12,000, and 6000 kJ/kg VS, respectively. Organosolv pretreatment achieved the maximal polyphenol solubilisation, i.e., 4.90 mg/g TS, when increasing the substrate-to-solvent ratio, whereas methane production did not benefit from the pretreatment, being comparable with that of raw PS at most (i.e., 55.0 mL CH4/g VS). On the other hand, ultrasounds mainly affected sugar solubilisation (up to 37.90 mg/g TS), enhancing methane production up to an extra 64%, achieved with the highest energy density. The organosolv route would benefit from further downstream steps to recover the biomolecules released in the liquid fraction, whereas ultrasounds pretreatment provided a slurry suitable for direct AD.

Funder

Science Foundation Ireland

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3