Graph Algorithms for Mixture Interpretation

Author:

Crysup BenjaminORCID,Woerner August E.,King Jonathan L.ORCID,Budowle Bruce

Abstract

The scale of genetic methods are presently being expanded: forensic genetic assays previously were limited to tens of loci, but now technologies allow for a transition to forensic genomic approaches that assess thousands to millions of loci. However, there are subtle distinctions between genetic assays and their genomic counterparts (especially in the context of forensics). For instance, forensic genetic approaches tend to describe a locus as a haplotype, be it a microhaplotype or a short tandem repeat with its accompanying flanking information. In contrast, genomic assays tend to provide not haplotypes but sequence variants or differences, variants which in turn describe how the alleles apparently differ from the reference sequence. By the given construction, mitochondrial genetic assays can be thought of as genomic as they often describe genetic differences in a similar way. The mitochondrial genetics literature makes clear that sequence differences, unlike the haplotypes they encode, are not comparable to each other. Different alignment algorithms and different variant calling conventions may cause the same haplotype to be encoded in multiple ways. This ambiguity can affect evidence and reference profile comparisons as well as how “match” statistics are computed. In this study, a graph algorithm is described (and implemented in the MMDIT (Mitochondrial Mixture Database and Interpretation Tool) R package) that permits the assessment of forensic match statistics on mitochondrial DNA mixtures in a way that is invariant to both the variant calling conventions followed and the alignment parameters considered. The algorithm described, given a few modest constraints, can be used to compute the “random man not excluded” statistic or the likelihood ratio. The performance of the approach is assessed in in silico mitochondrial DNA mixtures.

Funder

National Institute of Justice

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mitochondrial DNA;Encyclopedia of Forensic Sciences, Third Edition;2023

2. Microhaplotype and Y-SNP/STR (MY): A novel MPS-based system for genotype pattern recognition in two-person DNA mixtures;Forensic Science International: Genetics;2022-07

3. MMDIT: A tool for the deconvolution and interpretation of mitochondrial DNA mixtures;Forensic Science International: Genetics;2021-11

4. The time is now for ubiquitous forensic mtMPS analysis;WIREs Forensic Science;2021-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3