Abstract
Trichlorophenols are on the US environmental protection agency’s list of priority pollutants due to their serious damage to water safety. With the aim of adsorbing the 2,4,6-trichlorophenol (2,4,6-TCP), Zn2+-Al3+-tartrate layered double hydroxides (Zn2+-Al3+-C4H4O62−-LDHs) adsorbent was synthesized via homogeneous precipitation method. X-ray powder diffraction (XRD), Fourier infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) were used to characterize Zn2+-Al3+-C4H4O62−-LDHs. The concentration of 2,4,6-TCP was determined using gas chromatography–mass spectrometry (GC-MS). Zn2+-Al3+-C4H4O62−-LDHs exhibited a good adsorption performance of 2,4,6-trichlorophenol, since a bigger layer spacing of Zn2+-Al3+-C4H4O62−-LDHs was obtained than that in Zn2+-Al3+-CO32−-LDHs. Adsorption parameters of adsorption temperature, contact time, adsorbent dosage, and solution pH were investigated, the initial concentration of 2,4,6-TCP was 2.0 g/L. Response surface methodology (RSM) was employed to provide an investigative approach towards optimization of the adsorption process. The highest removal rate of 89.94% and the average removal rate of 88.74% were achieved under a temperature of 20.0 °C, a contact time of 2.5 h, an adsorbent dosage of 0.15 g, and a solution pH of 3. the capacity of the adsorbent is 599.6 mg/g. Meanwhile, the reusable properties of Zn2+-Al3+-C4H4O62−-LDHs were evaluated by the same adsorption system, and the removal rate of 2,4,6-TCP was 85.57% at the fifth regeneration. The obtained results confirmed that the Zn2+-Al3+-C4H4O62−-LDHs can be used as a potential introduction in practical applications for the removal of 2,4,6-TCP.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shaanxi Province of China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献