Response Analysis of Curved Tunnel under Near-Field Long-Period Ground Motion Considering Seismic Wave Propagation Effect

Author:

Liu Shaofeng,Yao Luyan,Feng Xiaojiu,Wang Peng

Abstract

In this paper, long-period ground motion is used as the dynamic input to study the performance evolution of curved tunnel lining structure under seismic wave propagation excitation. This paper presents numerical studies on seismic waves, considering propagation effect, and aims to illustrate the response principle and structural failure mechanism of tunnel structures under long-period ground motion. Firstly, based on the dynamic analysis method, the dynamic balance equation of a tunnel under the seismic wave effect was analyzed. Secondly, this equation was applied to the 3D finite element software, the corresponding numerical model and boundary conditions were established, and the parameterized numerical analysis of the tunnel was carried out. Finally, according to the numerical simulation results, the seismic response principle and structural failure mechanism of a tunnel structure under long-period ground motion were discussed. The research results show that the depth and segment thickness of the tunnel significantly affect the seismic performance of the tunnel. The seismic response mechanism of a curved tunnel is complex, which shows that the relative displacements on the left and right symmetrical positions are different. The displacement inside the curve is less than the displacement outside the curve. Compared with other types of ground motion, the near-site motion considering the seismic wave propagation effect can lead to large deformation of the tunnel, which damages the lining structure greatly, and the enhancement effect is prominent for the long shield tunnel.

Funder

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3