AFE-YOLOv8: A Novel Object Detection Model for Unmanned Aerial Vehicle Scenes with Adaptive Feature Enhancement

Author:

Wang Shijie1,Zhang Zekun1,Chao Qingqing1,Yu Teng1

Affiliation:

1. College of Electronic Information, Qingdao University, Qingdao 266071, China

Abstract

Object detection in unmanned aerial vehicle (UAV) scenes is a challenging task due to the varying scales and complexities of targets. To address this, we propose a novel object detection model, AFE-YOLOv8, which integrates three innovative modules: the Multi-scale Nonlinear Fusion Module (MNFM), the Adaptive Feature Enhancement Module (AFEM), and the Receptive Field Expansion Module (RFEM). The MNFM introduces nonlinear mapping by exploiting the property that deformable convolution can dynamically adjust the shape of the convolution kernel according to the shape of the target, and it effectively enhances the feature extraction capability of the backbone network by integrating multi-scale feature maps from different mapping branches. Meanwhile, the AFEM introduces an adaptive fusion factor, and through the fusion factor, it adaptively integrates the small-target features contained in the feature maps of different detection branches into the small-target detection branch, thus enhancing the expression of the small-target features contained in the feature maps of the small-target detection branch. Furthermore, the RFEM expands the receptive field of the feature maps of the large- and medium-scale target detection branches through stacked convolution, so as to make the model’s receptive field cover the whole target, and thereby learn more rich and comprehensive features of the target. The experimental results demonstrate the superior performance of the proposed model compared to the baseline in detecting objects of various scales. On the VisDrone dataset, the proposed model achieves a 4.5% enhancement in mean average precision (mAP) and a 5.45% improvement in average precision at an IOU threshold of 0.5 (AP50). Additionally, ablation experiments conducted on the challenging DOTA dataset showcase the model’s robustness and generalization capabilities.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3