Author:
Yang Wen-Zhao,Jin Long,Liang Yi-Zhi,Ma Jun,Guan Bai-Ou
Abstract
In this work, a beat-frequency encoded fiber laser hydrophone is developed for high-resolution acoustic detection by using an elastic corrugated diaphragm. The diaphragm is center-supported by the fiber. Incident acoustic waves deform the diaphragm and induce a concentrated lateral load on the laser cavity. The acoustically induced perturbation changes local optical phases and frequency-modulates the radio-frequency beat signal between two orthogonal lasing modes of the cavity. Theoretical analysis reveals that a higher corrugation-depth/thickness ratio or larger diaphragm area can provide higher transduction efficiency. The experimentally achieved average sensitivity in beat-frequency variation is 185.7 kHz/Pa over a bandwidth of 1 kHz. The detection capability can be enhanced by shortening the cavity length to enhance the signal-to-noise ratio. The minimum detectable acoustic pressure reaches 74 µPa/Hz1/2 at 1 kHz, which is comparable to the zeroth order sea noise.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献