Research on Transmission Task Static Allocation Based on Intelligence Algorithm

Author:

Wang Xinzhe12ORCID,Yao Wenbin1

Affiliation:

1. College of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. Radio and Television & New Media Intelligent Monitoring Key Laboratory of NRTA (Radio, Film & Television Design & Research Institute), Beijing 100045, China

Abstract

Transmission task static allocation (TTSA) is one of the most important issues in the automatic management of radio and television stations. Different transmission tasks are allocated to the most suitable transmission equipment to achieve the overall optimal transmission effect. This study proposes a TTSA mathematical model suitable for solving multiple intelligent algorithms, with the goal of achieving the highest comprehensive evaluation value, and conducts comparative testing of multiple intelligent algorithms. An improved crossover operator is proposed to solve the problem of chromosome conflicts. The operator is applied to improved genetic algorithm (IGA) and hybrid intelligent algorithms. A discrete particle swarm optimization (DPSO) algorithm is proposed, which redefines the particle position, particle movement direction, and particle movement speed for the problem itself. A particle movement update strategy based on a probability selection model is designed to ensure the search range of the DPSO, and random perturbation is designed to improve the diversity of the population. Based on simulation, comparative experiments were conducted on the proposed intelligent algorithms and the results of three aspects were compared: the success rate, convergence speed, and accuracy of the algorithm. The DPSO has the greatest advantage in solving TTSA.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3