Cubic Nonlinearity of Graphene-Oxide Monolayer

Author:

Neupane Tikaram1ORCID,Poudyal Uma1,Tabibi Bagher2,Kim Wan-Joong3,Seo Felix Jaetae2

Affiliation:

1. Department of Chemistry and Physics, The University of North Carolina at Pembroke, Pembroke, NC 28372, USA

2. Advanced Center for Laser Science and Spectroscopy, Department of Physics, Hampton University, Hampton, VA 23668, USA

3. K1 Solution R&D Center, Geumcheon-gu, Seoul 08591, Republic of Korea

Abstract

The cubic nonlinearity of a graphene-oxide monolayer was characterized through open and closed z−scan experiments, using a nano-second laser operating at a 10 Hz repetition rate and featuring a Gaussian spatial beam profile. The open z−scan revealed a reverse saturable absorption, indicating a positive nonlinear absorption coefficient, while the closed z−scan displayed valley-peak traces, indicative of positive nonlinear refraction. This observation suggests that, under the given excitation wavelength, a two-photon or two-step excitation process occurs due to the increased absorption in both the lower visible and upper UV wavelength regions. This finding implies that graphene oxide exhibits a higher excited-state absorption cross-section compared to its ground state. The resulting nonlinear absorption and nonlinear refraction coefficients were estimated to be approximately ~2.62 × 10−8 m/W and 3.9 × 10−15 m2/W, respectively. Additionally, this study sheds light on the interplay between nonlinear absorption and nonlinear refraction traces, providing valuable insights into the material’s optical properties.

Funder

NASA

ARO

UNC-Pembroke

K1 Solution R&D Center by the Korean

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3