Effect of Acute Cold Stress on Neuroethology in Mice and Establishment of Its Model

Author:

Hu Yajie,Liu Yang,Li ShizeORCID

Abstract

Cold environment is an inevitable stress source for humans and livestock in cold areas, which easily induce a cold stress response and then cause a series of abnormal changes in energy metabolism, neuroendocrine system, behavior and emotion. Homeostasis is maintained by the unified regulation of the autonomic nervous system, endocrine system, metabolism and behavior under cold exposure. Behavior is an indispensable part of the functional regulation of the body to respond to environmental changes. At present, the behavioral changes caused by cold exposure are unclear or even chaotic due to the difficulty of defining cold stress. Therefore, this study aims to systematically observe the changes in spontaneous movement, exploratory behavior and anxiety of mice under different intensity cold exposure and summarize the characteristics and behavior traits combined with relevant blood physiological indexes under corresponding conditions. Mice models of cold stress with different intensities were established (cold exposure gradients were 22 °C, 16 °C, 10 °C and 4 °C, and time gradients of each temperature were 2 h, 4 h, 6 h, 8 h, 10 h and 12 h). After the corresponding cold exposure treatment, mice immediately carried out the open field test(OFT) and elevated plus maze test (PMT) to evaluate their spontaneous movement, exploratory behavior and anxiety. Subsequently, blood samples were collected and used for the determination of corticosterone (Cort), corticotropin-releasing hormone (CRH), epinephrine (E), norepinephrine (NE), dopamine (DA) and 5-hydroxytryptamine (5-HT) by enzyme-linked immunosorbent assay (ELISA). Spontaneous movement of mice increased under 22 °C cold exposure, but their exploration behavior did not significantly change, and their anxiety improved at the initial stage. The spontaneous movement and anxiety of mice increased in the initial stage and decreased in the later stage under cold exposure at 16, 10 and 4 °C and the exploratory behavior was inhibited. The hypothalamic–pituitary–adrenal (HPA) axis and locus coeruleus-noradrenergic (LC/NE) system were activated by cold stress and fluctuated with different intensities of cold exposure. Meanwhile, serum DA increased, and 5-HT was the opposite under different intensities of cold exposure. In conclusion, mild acute cold exposure promoted the spontaneous movement, increased exploratory behavior and improved anxiety. As the intensity of cold exposure increases, cold exposure had a negative effect on spontaneous movement, exploratory behavior and emotion. The physiological basis of these behavioral and emotional changes in mice under different intensity cold stimulation is the fluctuation of Cort, CRH, E, NE, DA and 5-HT.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Graduate Innovative Research Project of Heilongjiang Bayi Agricultural University

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3