Study on Temperature Response of Rubberized Concrete Pavement Based on Fiber Bragg Grating Testing Technology

Author:

Zhang Gaojun1,Zhang Gaowang2ORCID,Yuan Jie3,Su Manman4

Affiliation:

1. Lanzhou New Area Urban Construction Engineering Co., Ltd., Lanzhou 730087, China

2. School of Civil and Architecture Engineering, Xi’an Technological University, Xi’an 710021, China

3. Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China

4. School of Civil Engineering, Yantai University, Yantai 264005, China

Abstract

The temperature response of pavement is not only crucial for assessing the internal stresses within pavement structures but is also an essential parameter in pavement design. Investigating the temperature response of rubberized concrete pavements (RCP) can support the construction of large-scale rubber concrete pavements. This study constructed a pavement monitoring system based on fiber Bragg grating technology to investigate the temperature distribution, temperature strain, temperature effects, and temperature stress of RCP. The results show that the daily temperature–time history curves of concrete pavement exhibit a significant asymmetry, with the heating phase accounting for only one-third of the curve. The temperature at the middle of RCP is 1.8 °C higher than that of ordinary concrete pavement (OCP). The temperature distribution along the thickness of the pavement follows a “spindle-shaped” pattern, with higher temperatures in the center and lower temperatures at the ends. Additionally, the addition of rubber aggregates increases the temperature strain in the pavements, makes the temperature–strain hysteresis effect more pronounced, and increases the curvature of the pavement slab. However, the daily stress range at the bottom of RCP is approximately 0.7 times that of OCP.

Funder

Tongji University Large Scale Instrument Open Testing Fund

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3