Modeling and Performance Study of Vehicle-to-Infrastructure Visible Light Communication System for Mountain Roads

Author:

Yang Wei1,Liu Haoran1ORCID,Cheng Guangpeng1

Affiliation:

1. Institute of Intelligent Communication and Computing, School of Information and Communication Engineering, Beijing Information Science and Technology University, Beijing 102206, China

Abstract

Visible light communication (VLC) is considered to be a promising technology for realizing intelligent transportation systems (ITSs) and solving traffic safety problems. Due to the complex and changing environment and the influence of weather and other aspects, there are many problems in channel modeling and performance analysis of vehicular VLC. Unlike existing studies, this study proposes a practical vehicle-to-infrastructure (V2I) VLC propagation model for a typical mountain road. The model consists of both line-of-sight (LOS) and non-line-of-sight (NLOS) links. In the proposed model, the effects of vehicle mobility and weather conditions are considered. To analyze the impact of the considered propagation characteristics on the system, closed-form expressions for several performance metrics were derived, including average path loss, received power, channel capacity, and outage probability. Furthermore, to verify the accuracy of the derived theoretical expressions, simulation results were presented and analyzed in detail. The results indicate that, considering the LOS link and when the vehicle is 50 m away from the infrastructure, the difference in channel gain between moderate fog and dense fog versus clear weather conditions is 1.8 dB and 3 dB, respectively. In addition, the maximum difference in total received optical power between dense fog conditions and clear weather conditions can reach 76.2%. Moreover, under clear weather conditions, the channel capacity when vehicles are 40 m away from infrastructure is about 98.9% lower than when they are 10 m away. Additionally, the outage probability shows a high correlation with the threshold data transmission rate. Therefore, the considered propagation characteristics have a significant impact on the performance of V2I–VLC.

Publisher

MDPI AG

Reference52 articles.

1. (2023, December 13). Global Status Report on Road Safety 2023. Available online: https://www.who.int/publications/i/item/9789240086517.

2. Road Traffic Accidental Injuries and Deaths: A Neglected Global Health Issue;Ahmed;Health Sci. Rep.,2023

3. Visible Light Communication for Intelligent Transportation Systems: A Review of the Latest Technologies;Shaaban;J. Traffic Transp. Eng. (Engl. Ed.),2021

4. Current Challenges for Visible Light Communications Usage in Vehicle Applications: A Survey;Cailean;IEEE Commun. Surv. Tutorials,2017

5. Optimal Resource Allocation and Interference Management for Multi-User Uplink Light Communication Systems With Angular Diversity Technology;Eldeeb;IEEE Access,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3