Evaluating Student Knowledge Assessment Using Machine Learning Techniques

Author:

Alruwais Nuha1,Zakariah Mohammed2

Affiliation:

1. Department of Computer Science and Engineering, College of Applied Studies and Community Services, King Saud University, P.O. Box 22459, Riyadh 11495, Saudi Arabia

2. Department of Computer Science, College of Computer Science and Information, King Saud University, P.O. Box 11442, Riyadh 11574, Saudi Arabia

Abstract

The process of learning about a student’s knowledge and comprehension of a particular subject is referred to as student knowledge assessment. It helps to identify areas where students need additional support or challenge and can be used to evaluate the effectiveness of instruction, make important decisions such as on student placement and curriculum development, and monitor the quality of education. Evaluating student knowledge assessment is essential to measuring student progress, informing instruction, and providing feedback to improve student performance and enhance the overall teaching and learning experience. This research paper is designed to create a machine learning (ML)-based system that assesses student performance and knowledge throughout the course of their studies and pinpoints the key variables that have the most significant effects on that performance and expertise. Additionally, it describes the impact of running models with data that only contains key features on their performance. To classify the students, the paper employs seven different classifiers, including support vector machines (SVM), logistic regression (LR), random forest (RF), decision tree (DT), gradient boosting machine (GBM), Gaussian Naive Bayes (GNB), and multi-layer perceptron (MLP). This paper carries out two experiments to see how best to replicate the automatic classification of student knowledge. In the first experiment, the dataset (Dataset 1) was used in its original state, including all five properties listed in the dataset, to evaluate the performance indicators. In the second experiment, the least correlated variable was removed from the dataset to create a smaller dataset (Dataset 2), and the same set of performance indicators was evaluated. Then, the performance indicators using Dataset 1 and Dataset 2 were compared. The GBM exhibited the highest prediction accuracy of 98%, according to Dataset 1. In terms of prediction error, the GBM also performed well. The accuracy of optimistic forecasts on student performance, denoted as the performance indicator ‘precision’, was highest in GBM at 99%, while DT, RF, and SVM were 98% accurate in their optimistic forecasts for Dataset 1. The second experiment’s findings demonstrated that practically no classifiers showed appreciable improvements in prediction accuracy with a reduced feature set in Dataset 2. It showed that the time required for related learning objects and the knowledge level corresponding to a goal learning object have less impact.

Funder

King Saud University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference46 articles.

1. Antecedents of Student Character in Higher Education: The role of the Automated Short Essay Scoring (ASES) digital technology-based assessment model;Susilawati;Eurasian J. Educ. Res.,2022

2. Assessing students’ self-efficacy for negotiating during a role-play simulation of political decision-making. Taking student characteristics and simulation features into account;Vermeiren;Stud. Educ. Eval.,2022

3. Beyond Early Warning Indicators: High School Dropout and Machine Learning;Sansone;Oxf. Bull. Econ. Stat.,2019

4. Educational data mining: Prediction of students’ academic performance using machine learning algorithms;Smart Learn. Environ.,2022

5. A machine learning approximation of the 2015 Portuguese high school student grades: A hybrid approach;Oliveira;Educ. Inf. Technol.,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3