A Study of Strain-Driven Nucleation and Extension of Deformed Grain: Phase Field Crystal and Continuum Modeling

Author:

Kong Ling-yi,Gao Ying-jun,Deng Qian-qian,Luo Zhi-rong,Lu Yu-jiang

Abstract

The phase-field-crystal (PFC) method is used to investigate migration of grain boundary dislocation and dynamic of strain-driven nucleation and growth of deformed grain in two dimensions. The simulated results show that the deformed grain nucleates through forming a gap with higher strain energy between the two sub-grain boundaries (SGB) which is split from grain boundary (GB) under applied biaxial strain, and results in the formation of high-density ensembles of cooperative dislocation movement (CDM) that is capable of plastic flow localization (deformed band), which is related to the change of the crystal lattice orientation due to instability of the orientation. The deformed grain stores the strain energy through collective climbing of the dislocation, as well as changing the orientation of the original grain. The deformed grain growth (DGG) is such that the higher strain energy region extends to the lower strain energy region, and its area increase is proportional to the time square. The rule of the time square of the DGG can also be deduced by establishing the dynamic equation of the dislocation of the strain-driven SGB. The copper metal is taken as an example of the calculation, and the obtained result is a good agreement with that of the experiment.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3