Abstract
The increasing water demand in Egypt causes massive stress on groundwater resources. The high variability in the groundwater depth, aquifer properties, terrain characteristics, and shortage of rainfall make it necessary to identify the groundwater potentiality in semi-arid regions. This study used the possibilities of multi-criteria decision approaches (MCDA), geographical information system (GIS), and groundwater field data to delineate potential groundwater zones in the Tushka area, west of Lake Nasser, South Egypt. Furthermore, groundwater potentiality identification can help decision-makers better plan and manage the water resources in this promising area. Eight controlling factors were utilized to achieve the objective of the present work using multi-criteria decision analysis (MCDA) approaches, namely the analytical hierarchy process (AHP) and frequency ratio (FR) models. The controlling parameters were integrated with the geographic information system (GIS) to develop the zones of groundwater potentialities. The results revealed that high and moderate-potential zones cover approximately 61% and 52% of the total area in the AHP and FR models, respectively. A total of 44 groundwater production wells along with the well yield were collected and used to validate the models. The results were evaluated using the receiver operating characteristics (ROC) curve. The best-performing prediction rates achieved by AHP and FR were 83% and 81%, respectively. Finally, the obtained results indicated that the AHP model achieved better performance than the FR model.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献