Simulating Forest Fire Spread with Cellular Automation Driven by a LSTM Based Speed Model

Author:

Li XingdongORCID,Zhang MingxianORCID,Zhang Shiyu,Liu Jiuqing,Sun Shufa,Hu Tongxin,Sun Long

Abstract

The simulation of forest fire spread is a key problem for the management of fire, and Cellular Automata (CA) has been used to simulate the complex mechanism of the fire spread for a long time. The simulation of CA is driven by the rate of fire spread (ROS), which is hard to estimate, because some input parameters of the current ROS model cannot be provided with a high precision, so the CA approach has not been well applied yet in the forest fire management system to date. The forest fire spread simulation model LSTM-CA using CA with LSTM is proposed in this paper. Based on the interaction between wind and fire, S-LSTM is proposed, which takes full advantage of the time dependency of the ROS. The ROS estimated by the S-LSTM is satisfactory, even though the input parameters are not perfect. Fifteen kinds of ROS models with the same structure are trained for different cases of slope direction and wind direction, and the model with the closest case is selected to drive the transmission between the adjacent cells. In order to simulate the actual spread of forest fire, the LSTM-based models are trained based on the data captured, and three correction rules are added to the CA model. Finally, the prediction accuracy of forest fire spread is verified though the KAPPA coefficient, Hausdorff distance, and horizontal comparison experiments based on remote sensing images of wildfires. The LSTM-CA model has good practicality in simulating the spread of forest fires.

Funder

Natural Science Foundation of Heilongjiang Province of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3