Affiliation:
1. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract
To investigate the effects of different passage structures on the aerodynamic performance of the transonic fans, this paper develops a reliable and practical quasi-3D optimization method for the hub based on the experimental data of Stage 67. In the method, the hub profile of Stage 67 can be optimized without changing the geometrical data of the blades. The optimization results show that stream tube diffusion characteristics depend on the hub profile’s curvature in the boundary layer near the hub. In the front part of the hub, the end wall with a concave construction can enhance the expansion of the stream tubes near the root of the rotor blade, which helps control the diffusion flow of viscous fluid effectively to decrease the low-energy fluid’s energy degradation and radial secondary flow in the boundary layer. In the latter part of the hub, the end wall with a convex construction facilitates the shrinkage of stream tubes to decrease the secondary flow loss and separated flow loss by controlling the separation of the boundary layer efficiently. This construction of the hub profile is beneficial to promote the aerodynamic performance of a transonic fan.
Funder
National Science and Technology Major Project
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction