Guiding as a General Consequence of the Charged Particle Interaction with the Inner Surface of an Insulator Capillary—Guiding of 1 MeV Proton Microbeam through Polytetrafluoroethylene Macrocapillary

Author:

Tőkési Károly1ORCID,Rajta István1ORCID,Nagy Gyula1,Bereczky Réka Judit1

Affiliation:

1. Institute for Nuclear Research (ATOMKI), P.O. Box 51, H-4026 Debrecen, Hungary

Abstract

The transmission of energetic, 1 MeV proton microbeam through a single, cylindrical shaped, macrometer-sized polytetrafluoroethylene capillary was studied experimentally. The capillary axis was tilted with respect to the axis of the incident ion beam. The tilting, the aspect ratio of the capillary and the small beam divergence disabled the geometrical transmission of the beam through the target. The intensity, energy, deflection and charge state of the transmitted beam were investigated. We found that the pure guided transmission of a MeV/amu energy ion beam is observable. We clearly identified three completely different stages during the guiding process according to the measured energy distribution of transmitted particles. At the beginning the transmission intensity was low and only inelastic contributions with energy lower than 1 MeV were found in the spectrum. Later, in the second stage, the elastic peak appeared and became more and more significant. Finally, when the stable transmission evolved, only the elastic peak was present and the inelastic area was totally absent as a direct consequence of the ion guiding and as a result of the charged particle interaction with a charged inner surface of the insulator capillary.

Funder

Bilateral relationships between Qatar and Hungary in science and technology

Publisher

MDPI AG

Subject

Condensed Matter Physics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3